Protein structure refinement using a quantum mechanics-based chemical shielding predictor.
نویسندگان
چکیده
The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1-0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural change may be due to force field deficiencies. The overall accuracy of the empirical methods are slightly improved by annealing the CHARMM structure with ProCS15, which may suggest that the minor structural changes introduced by ProCS15-based annealing improves the accuracy of the protein structures. Having established that QM-based chemical shift prediction can deliver the same accuracy as empirical shift predictors we hope this can help increase the accuracy of related approaches such as QM/MM or linear scaling approaches or interpreting protein structural dynamics from QM-derived chemical shift.
منابع مشابه
Protein structure refinement using a quantum mechanics-based chemical shielding predictor† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04344e Click here for additional data file.
Additional supplementary material, including the structures used in the chemical shift prediction, can be found on Table S1. UniProt codes, names, PDB IDs and resolution of the X-ray structures, residues included in the models, and the BMRB codes of the chemical shift data of the 17 proteins used in this study. " a " indicates an NMR refined x-ray structure.
متن کاملCorrection of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations.
In this work, protein side chain (1)H chemical shifts are used as probes to detect and correct side-chain packing errors in protein's NMR structures through structural refinement. By applying the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method for ab initio calculation of chemical shifts, incorrect side chain packing was detected in the NMR structures of the Pin1...
متن کاملStructure-Activity Relationship of Imidazobenzodiazepines, an AM1 Semi-Empirical Quantum Mechanics Study
Conformations and electronic properties of a series of imidazobenzodiazepines are investigated by AM1 semi-empirical quantum mechanics method. It is shown that substitution of Cl in position 7 instead of 8, changes the geometry of the seven membered lactam ring; this may put the N5 nitrogen in a better positon to act as a hydrogen bond acceptor, and the phenyl ring in position 6 is probably...
متن کاملAn ab initio quantum chemical investigation of TOMS nmr SHIELDING TENSORS IN Adenine-thymine, Adenine-uracil, Guanine-Cytosine & uracil-quartet: comparison between theoretical and experimental results
We have evaluated the NMR shielding tensors for A:T,G:C,A:U in Watson-crick, and U-quartet. We have computed NMR shielding tensors at B31YP level by using 6-31G(d) basis set. We have compute anisotropy and asymmetry in A:T,G:C,A:U and U-quartet. The NMR shielding tensors were calculated using the GIAO method. The natural bonding orbital analysis (NBO) were performed. NBO calculation have been ...
متن کاملStatic and dynamic NMR properties of gas-phase xenon
This thesis presents computational studies of both the static and dynamic parameters of the nuclear magnetic resonance (NMR) spectroscopy of gaseous xenon. First, state-of-the-art static magnetic resonance parameters are computed in small xenon clusters by using methods of quantum chemistry, and second, time-dependent relaxation phenomena are investigated via molecular dynamics simulations at d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2017